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THE EFFECT OF THE NONSTEADY STATE AND TURBULENCE ON INTERPHASE 

HEAT AND MASS TRANSFER IN THE RELATIVE MOTION OF BUBBLES 

IN A BOILING STREAM 

V. A. Gerliga and V. I. Skalozubov UDC 536.421.3 

An analytical solution is proposed for the heat flow between vapor bubbles 
and a liquid with consideration of the nonsteady relative velocity of bub- 
ble motion in the nonsteady pressure field of a boiling stream. 

Numerous papers have been devoted to the questions of rates of change in bubble dimen- 
sions in steady-state nonmoving volumes of a boiling liquid; reviews of these papers are 
presented, for example, in [i~ 2]. However, to create closed mathematical models of non- 
equilibrium boiling flows we must have relationships which describe the transfer of heat 
and mass between moving vapor bubbles and a liquid, with consideration given to the defini- 
tive features of bubble evolution within the stream. At the present time, only individual 
special cases have been investigated. 

A solution was obtained in [3] for the specific heat flow q between the vapor bubbles 
and a liquid, with consideration given to the relative nonsteady velocity of phase motion, 
while the quasisteady self-similar numerical approximation of that solution is presented 
in [4]. In [5] and in the works of Nakoryakov et al. [6] analytical solutions were obtained 
for q with consideration of the nonsteady nature of the pressure field in the process of 
bubble growth in the absence of any effect exerted by the induced convection that is due 
to the relative motion of the bubbles. 

Semiempirical relationships have been derived in [7-9] and in these allowance is made 
for the decisive effect of turbulence on the specific heat flow between vapor bubbles and 
the liquid in a stream. These relationships in this case make no allowance for the relative 
motion of the bubbles, nor of the nonsteady nature of the flow parameters, and in the limit 
(an insignificant degree of flow turbulence) these relationships do not correspond to other 
special solutions. 

In the general case we have the combined effect of all of the above-enumerated factors 
on the exchange of heat and mass between bubbles and liquid in a boiling stream. However, 
at the present time there exists no solution which allows for the nonsteady nature of the 
relative velocity of bubble motion in a field of nonsteady pressure for a boiling turbulent 
stream. 
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Let us examine the problem of determining the exchange of heat and mass between vapor 
bubbles and a liquid in the case of a nonsteady relative velocity U(~) of bubble motion 
and a prehistory of bubble development in a field of boiling-stream nonsteady parameters. 
We will solve this problem under the following basic assumptions: i) the exchange of heat 
and mass between bubbles and the liquid is governed by the thermal resistance at the boun- 
dary of phase separation (from an energy standpoint the thermal pattern matches the Labuntsov 
classification); 2) the bubble is spherical in shape and has a radius R; 3) the liquid is 
incompressible; 4) the motion of the liquid about the bubble surface is potential; 5) we 
will neglect bubble interaction. 

The density of the heat flow between the bubble and the liquid is defined as follows: 

LL ~r Ot 
q = - - ~ J o  Oy (y=0)  sin0d0" (1) 

We thus have to know the field of temperature distribution around the bubble. On the 
basis of the adopted assumptions, the equation for the energy of the liquid around the sur- 
face of the bubble [i0]: 

2aL Ot az O (  Ot ) Ot + Vr Ot VoOt Ozt + - -  + sin0 
O----x'- ~ -}- rO0 -- aL" Or ---'-T r Or r ~ sin 0 00 

(2) 

where 

( R 3 ) R+ Wn q R dP = - -  cosO+ �9 W~= --; Vr U 1 r 3 ' lpv 3C~ dx (3) 

- -  sin 0. V0 = U 1 +  2r 3 (4) 

A more complete expression for V r and V 8 with consideration of the interaction between 
the bubbles is presented in [4]. As was demonstrated in [I0, ii], system (2)-(4) with a 
thickness of the thermal boundary layer very much smaller than the bubble dimension R can 
be reduced to the equation 

OT R~~ [3 U cos0+ 2 R n ] Y  OT 3 R~ U OT OZT 
Ox at. R - -  OY + --if- a---T ~ sin 0 O----'O = OY -'----'~' (5)  

where 

T =  t - t |  Y Y �9 r - -R;  x ax 
t| Ro" y R2o 

The initial and boundary conditions will be taken in the form: 

T(Y, O, 0)--O, 

T (0, x, O) =: To (x), 

T(oo, x, 0 )=  0. 

We will solve the formulated problem by the method of integral transformations. 
will use the Fourier sine transform: 

We 

(6) 

(7) 

(8) 

Tw(x, O),= i T ( V ,  x, O)s inwYdY,  
0 

(9) 
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2 T (Y, x, O) = ~ Tw (x, O) sin toYdw. 
a b ( i 0 )  

With c o n s i d e r a t i o n  of conditions (8)  and (7), from expressions (5) and (6) we obtain: 

OTto + lU,cos 0 + U2] to aTw + .U, sin 0 c~T___..__~ = wTo - -  m2Tt,, 
ax oto 2 do 

- -  (U, cos 0 + U2) T~, (n) 

where Tw(O, 0) = 0, 

U,= -3 R2oUlaR; U2= 2R~WRIaR. 
2 

The equations of the characteristics for (11) have the form 

.., dO .__ U, dx, 
sin 0 2 

day 
to 

- -  ::= ( V  1 c o s  0 d I- U2) dx, 

dT~ 
dx 

- -  + (U, cos 0 + U,, + w 2) T~ = wTo. 

After integration of (13)-(15) we will obtain, respectively: 

tg 02 = e x P { b  i ,u ,2  de--C,} ,  

(12) 

(13) 

(14) 

(15) 

(16) 

x , _e,p{2[! 

l + e x p { 2 [ ~ i  U,2 da--Ct]} 
F G] d~ -c,}, 

(17) 

x X 

0 0 0 

( 1 8 )  

We will determine the constants CI, C2, C3 from the expression C 3 = ~(CI, C 2) in a 
manner analogous to that described in [3, i0]. We will express CI, C2, C3, respectively, 
in accordance with (16), (17), and (18). With consideration of condition (12), after rather 
cumbersome transformations, following [i0], for the transform Tw(x , O) we will obtain the 
expression: 

x 

Tw (x, 0) ---- .[ Tow exp { - -  2 [cp (x) - -  cp (~)] • 
0 

x .  

• exp { - -  w 2 .I exp [--  2cp (x) + 2cp (s)] ds} d~, 
t 

(19) 

0 
b 1 - -  A (s, x) tg ~ 

q~ (b) - -  q~ (a) = Ut + U~ ds, 
�9 ~ 1 + A (s, x) tg 2 

2 

(20) 

128 



A (s, x) = exp (-- S U1da). (21 )  
$ 

We will restore the original T(Y, x, 0) from expressions (i0) and (19): 

3{ 
1 y ( To exp {2 [q~ (~) - -  qo (x)]} [F (~, x)]- T e x p .  

T =  21/~ ' -  a 
Yz ~} dE, (22 )  

4F(~, 

where 

x 

F (~, x) = .f exp 12q~ (s) - -  2q~ (x)] ds. 

Having brought (22) to dimensional form, and after substitution into Eq. (I), we will 
finally obtain: 

~L ~ "~ 
q ---- a ~ s i ,  0 I (t~ - -  to) exp {2 [qD (~)--  ~ (~)]} {F(~, "o]-S/2dOd~. ( 2 3 )  

Expression (23) characterizes the interphase specific heat flow between the vapor bubbles 
and the liquid in nonsteady relative bubble motion in a field of nonsteady boiling-flow 
pressure. 

Numerical analysis of the derived solution demonstrates that on satisfaction of the 
relationships: 

Pe~ = 2UR ~ Ja = CL pz (1~ - -  to) ; [to (x = 0) - -  t~l > dto (~_______~) 
7 Ipv d, (24) 

from expression (23) follow the results that correspond to the familiar quasisteady approxi- 
mation of the Scriven solution, obtained by Labuntsov and his associates: 

2 

N~ - ~ (t~ - -  t.) ~ - - 2 -  + ~ " (25)  

The first condition in (24) indicates that the velocity of the relative bubble motion 
is rather small and the velocity field about the bubble surface is determined by the convec- 
tion that is a consequence of the motion of the boundary of phase separation, in accordance 
With formulas (3) and (4). The second condition in (24) indicates that the rate at which 
the pressure is reduced (the temperature of the vapor) is rather small during the course 
of the process relative to the temperature difference at the initial instant of time, and 
a change in the difference (t o - t~) during the time ~ is, therefore, insignificant. 

When the conditions 

dto (*) T; PeR (T = 0) > ~Pe~--(-!2 * (26 )  

are met, solution (23) corresponds to the quasisteady self-similar approximation of the 
Ruckenstein solution obtained in [4]: 

2 

N u =  12 Ja l q - ~  q- q- 1.13Pe~ • 
n . ( 2 7 )  

[ 1 BJa ~ ] 
• 13Ja a 'a-kpe]~ " 3 -  31Ja  4 " a + p e ~  " 
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o qz @ 

Fig. 1. Ratios of the Nu number determined from (23) 
to the Nu I number determined from (27) for fixed Ja 
numbers and for various laws governing the relative 
velocity of bubble motion (P = 2.0 MPa; R 0 = 10 -4 m): 
1) Ja = 10, Pe R = 103 ~; 2) Ja = 10, Pe R = 10 + 0.1 T. 
t, sec. 

Conditions (26) indicate that we can neglect the changes in the temperature and velocity 
differences relative to bubble motion insofar as these relate to the values at the initial 
instant of time. Thus, in satisfying conditions (26) the quasisteady approximation is accep- 
table; in fact, that is precisely the role of formula (27). 

From a comparison of calculations involving (23) and (27) we can draw the following 
conclusions: 

i. When IPeR(T)! m IPeR(~ = 0) I the differences may be significant. The Nu number 
ratio determined from (23) relative to Nu I determined from (27) reaches values of 5-10 (see 
Fig. i). 

2. With a reduction in the ratio PeR/PeR(~ = 0) the differences are sharply diminished 
(see Fig. 1). In this case, deviations in numerical calculations may arise by the self-simi- 
larity of solution (27), i.e., by the fact that according to (27) Nu is independent of the 
initial conditions. 

3. According to solution (27), the relative velocity of bubble motion (Pe R ) influences 
the Nu number in the region of high temperature differences (Jam l) when Pe R > 10Ja. 
Numerical analysis of (23) demonstrates that the effect of the relative velocity of bubble 
motion on q becomes significant even when PeR 2 > 10Ja. Tokuda, Yang, and Clark [12] reached 
a similar conclusion on the basis of numerical analysis. 

On satisfaction of the conditions 

Pe~0; Jail 

solution (23) corresponds to results obtained from the familiar formula [5]: 

(28) 

= V r  + v �9 (291 

The first condition in (28) indicates that the forced convection caused by the relative 
motion of the bubble exerts no influence on the flow of heat between the bubbles and the 
liquid. The region of applicability for solution (29) in the second of the conditions in 
(28) is also confirmed by numerical calculations [13]. 

Unfortunately, at the present time there are no experimental data sufficiently adequate 
to validate the obtained solution (23). However, the cited special solutions (25), (27), 
and (29), which at the limit correspond to (23), were confirmed experimentally under corre- 
sponding conditions of applicability. 

It should be pointed out that the initial condition (6) that is usually employed has 
not been formulated very rigorously [1]. Indeed, at the initial instant of time in the 
general case: t(y, 0, 8) ~ t~. Let us examine problem (5) for the following initial and 
boundary conditions: 
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T ( Y ,  O, O ) = f ( Y ,  0); T(O, x, O)=To(x);  T(oo, x, 0 ) = 0 .  
(30) 

In this case, system (5), (30) after the Fourier sine transform (9) can be presented 
in the form 

OTw OT~ I f _  OT +- [U~ cos 0 + U2] w ~ 0---s Ow + 2 1 s i n  0 - -  = O0 

= wTo - -  (w ~ + U~ cos 0 + U2) T~, 

Tw (x, O)[x=0 ---- i f (r' O) sin w Y d Y  = fw (0). 
0 

( 3 1 )  

(32)  

Using Eqs. (31) and (32) for transformations similar to (13)-(18), for the transform 
Tw(x, O) we will obtain the following expression: 

Tw (x, O) = [w exp [q~ (0) -- ~ (x)] exp {w 2 f exp [q~ (s) -- ~ (x)] ds} + 
0 

x x 

+ exp bP ( 0 ) -  q~ (x)] exp { - -w  2 .[ exp [qo ( s ) -  q~ (x)]} w _[ To exp [2q~ (~)-  
0 0 

- -  q~ ( x ) -  q)(O)l.exp {w ~ ~ exp [2q~ (~;) - -  2q~ (x)l da} d~, 
0 

(33) 

where the quantity ,~ corresponds to (20). Using formula (i0) to restore the original T(~, 
x, 0) from (33), after rather cumbersome transformations, following [14], we find 

q = _ _  a 2 exp[~(0)--~p(~)] S s in0[B(~)]  2 x 
2~2 0 

o 4aB ('0 dzdO Jr q [f (Y) ---- 0], 

where q[f(Y) = 0] is determined from solution (23) derived above. 

B (~ = ] [~ ( s ) .  ~ (~)1 as. 
0 

In expression (34) 

(35)  

Thus, for a known initial distribution of liquid temperatures f(y) the specific heat 
flow q is determined under the conditions employed here from formula (34). A simplified 
numerical analysis shows that the first term in (34) diminishes rapidly with increasing ~. 

To account for the effect of turbulence on interphase heat and mass exchange, it is 
proposed in [ii] within the framework of a phenomenological approach formally to present 
the coefficient of thermal conductivity a in the form of an additive sum of molecular a L 
and a semiempirical turbulent coefficient a T that is a function of the flow regime parameters: 

a : a  L l + k  1 - - ~  1 + ~ 1  , (36)  

where  a c c o r d i n g  t o  [15 ] :  A1 = WoR2/9VL D. As was d e m o n s t r a t e d  in  [ 1 1 ] ,  t h e  t u r b u l e n t  mech- 
an isms o f  t r a n s f e r  may a f f e c t  t h e  h e a t  and mass exchange  be tween  t h e  b u b b l e s  and t h e  l i q u i d  
where the dimensions of the bubbles are greater than the internal scale of the turbulence 
A0 ~ (v~ ~ Consequently, 

If,when R>~O,  
= [0,When R~ %o, (37) 
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Comparison with the experimental data of Kevorkov [8] shows that the coefficient k = 
3.3.10 -6 . The proposed approach of describing the effect of turbulence on the flow of heat 
between the vapor bubbles and the liquid, unlike the formulas derived in [7-9], makes allow- 
ance also for the combined effect of the nonsteady relative velocity of bubble motion in 
the nonsteady pressure field. It should be noted that the proposed allowance for liquid 
turbulence is approximate and requires additional work. 

Thus, having determined the coefficient u in (23) and (34) in the form of (36) and 
(37), we obtain expressions for a description of the specific flow of heat between the vapor 
bubbles and the liquid in the case of nonsteady relative motion in the field of nonsteady 
flow pressure, with consideration given to the influence exerted by the turbulence mechanisms 
of transfer. 

NOTATION 

XL, aL, VL, CL, are, respectively, the coefficients of thermal conductivity, heat con- 
duction, viscosity, and heat capacity of the liquid; t, temperature of the liquid; r, 8, 
spherical coordinates; R0, R, initial and instantaneous radius of the bubble; s latent 
heat of vapor formation; Cv, speed of sound in the vapor; ~, time; P, pressure; Pv, PL, 
densities in the vapor and in the liquid; Fo = a~/R02, Fourier number; 9, true volumetric 
vapor content in formula (36), a function; Pe = WoD/a L, Peclet number; W0, average velocity 
of the stream; D, diameter of the channel. 
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